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Abstract

The work, described in this paper, covers three topics: real-world
terrain analysis, synthetic terrain generation based upon the
results of the analysis stage, and dynamic terrain generation. Each
topic involves the theory of multifractals. First, a summary of four
known fractal-based techniques for terrain generation is presented
including fractional Brownian motion, Mid-point displacement,
Iterated Function Systems and the multifractal formalism. The
multifractal formalism was chosen for both the analysis of real-
world terrain data, as well as the generation of synthetic terrain
surfaces. The authors implemented a multifractal terrain analysis
algorithm that captures terrain characteristics of real-world data,
into five parameters. These parameters were put into a multifractal
terrain generation algorithm that produced synthetic terrain with
features similar to those in the terrain that was analysed. Also, an
algorithm for zooming in on synthetic terrain was developed.
Finally, an application was developed that generates terrain
dynamically.

1 Introduction

The work described in this paper aims at the investigation of fractal based
techniques for the representation of terrain models. From the earliest point in fractal
research, applications for terrain generation were developed [1, 2, 3, 4]. In
particular we are interested in the possibilities to use these methods for the on-line
generation of terrain models in real-time for visual simulation applications. In
visual simulation systems, the geometrical model of the world lies at the basis of the
system. This representation of the environment is the input based on which the
images are rendered. It contains the mathematical definition of every element in the
simulated world. Terrain databases for visual simulation purposes are usually based
on data that have been acquired either by surveying, by digitizing existing maps, or
by spatially sampling real-world terrain using, e.g., aerial photography or satellite
born height measuring equipment.



In order to achieve real-time generation of images, based on these very large
databases, techniques such as spatial indexing, database culling, and level-of-detail
management have been developed [5]. These allow the image generation process to
minimize the amount of data that has to be retrieved from the database, and thus to
maximize the rendering speed.

For certain visual simulation applications, either military or in the civil domain,
difficulties in the data-acquisition process severely limit the availability of detailed
terrain databases. For instance, for the simulation of remotely controlled planetary
rover vehicles on Mars, only very small parts of that planet have been captured in
3D terrain models of sufficient detail. In order to evaluate the performance of new
rover designs, or training operators, databases of wider areas with different terrain
features are required. It is often not required that these databases represent actual
real-world terrain, as long as the characteristic features are represented correctly.

Another way of representing natural phenomena uses the theory of fractals [1]. This
mathematical theory is based on numerous iterations or recursions of a simple rule,
producing complex shapes. By introducing small random deviations in every
iteration, the resulting shape becomes irregular. From a fractal definition it is
possible to extract output at any required resolution, higher output resolutions
requiring more iterations. In this way, fractal-based methods provide implicit level-
of-detail control.

It is possible to synthesize realistically looking representations of natural
phenomena, e.g., terrain models, based on fractal techniques [2]. Conversely, real
world data can be analysed and their fractal properties extracted [3, 6]. These fractal
parameters, which characterise certain features of, e.g., a terrain, can then be used
to control the terrain generation process. Thus, a synthetic but visually realistic
terrain model can be generated when only limited amounts of real-world terrain data
are available.

Finally, because the basic rule is very simple, the amount of input data needed is
very small. The realistic output comes from the numerous iterations of the rule. This
property of fractal algorithms has been recognised as very important for data
compression applications [7].

The above mentioned aspects of fractal methods, i.e., ability to represent natural
terrain features, implicit level-of-detail control, and compact input data
representation, make them interesting candidates for the on-line generation of
terrain models as opposed to the off-line construction of geometric terrain databases.
However, the generation of fractal based terrain models requires considerable
processing power, because the number if iterations of the basic rule can be large.
Therefore, the parallellisation of fractal based terrain generation algorithms in order
to boost their performance, is an important issue.



In the remainder of this paper, we first present a brief overview of various fractal
based methods for terrain generation in section 2. Section 3 describes our
implementation of an experimental terrain analysis and generation system, based on
the multifractal approach. We also provide preliminary results of synthetic Martian
terrain models. Finally, in section 4, the possibilities for parallellisation of the
generation algorithm, which is a subject for future research, are discussed.

2. Fractal techniques for terrain modelling

In this chapter, a summary of fractal theory and algorithms for constructing fractal
landscapes, is presented. In 2.1, fractal Brownian motion is discussed. Paragraph
2.2 gives an overview of the Mid-point displacement technique and Iterated
Function Systems (IFS) are presented in 2.3. The last paragraph, 2.4, treats the
multifractal formalism. Multifractals are especially suitable to capture the
characteristics of terrain features and to generate new terrain based on these
characteristics.

2.1 Fractional Brownian motion

The characterization and modelling of random fractals can be based on
generalisations of fractional Brownian motion [1], denoted as fBm. Fractional
Brownian motion is an extension to the concept of Brownian motion. A fractional
Brownian motion is a single valued function VH (t). Its increments
∆VH (∆t) = VH (t2) - VH (t1) have a Gaussian distribution with variance:

<∆VH
2(∆t)> ∝ ∆t 2H , (1)

where ∆t = |t2 - t1| and the angular brackets denote averages over many samples of
VH (t). The parameter H has a value 0 < H < 1. The value H = 1/2 gives Brownian
motion with ∆V2 ∝ ∆t, and its increments are independent. For H > 1/2, the
increments have a positive correlation and for H < 1/2, a negative correlation. If the
time scale ∆t is changed by a factor r, then the increments ∆VH change by a factor
r H,

<∆VH
2(r ∆t)> ∝ r H <∆VH

2(∆t)>. (2)

This non-uniform scaling is known as self-affinity. Uniform scaling is known as
self-similarity. The fractal dimension D for a trace of VH (t) is:

D = 2 - H (3)

The random function V(t) is characterised by its spectral density function SV (f). If
V(t) is Gaussian white noise, SV (f) ∝ 1/f 0. For simple power laws where SV (f) ∝ 1/f β

with 1 < β < 3, it can be shown that β = 2H + 1. This is a direct relation between the



spectral density SV and the fractional Brownian motion function V. For Brownian
motion, H = 1/2. which corresponds to a spectral density function S(f) with β = 2 or
1/f 2 noise.

Because a trace of fractional Brownian motion looks very much like a mountain
horizon, it can be used for artificial terrain generation. To do this, VH (t) must be
replaced by VH (x,y) representing altitude, where x and y represent the coordinates in
the plane. Parameter t is replaced by r with ∆r 2 = ∆x 2 + ∆y 2. The fractal dimension
of the surface is:

D = 3 - H (4)

Terrain can be numerically generated using the relation between function V and its
spectral function SV by filtering a surface of samples of white noise to give directly
the desired power law 1/f β for variations in any desired direction. Filtering can be
done using the Fast Fourier Transform [1, 8].

2.2 Mid-point displacement

The mid-point displacement method (MPD) is a recursive generating technique
which approximates fBm. Given a square grid of unit size δ, the MPD method
generates a new set of interpolation points to the grid, making its resolution δ/√2
(see Figure 1). Displacing again results in a resolution of δ/2 etc. In each stage,
resolution is scaled with a factor r = 1/√2. A new point is calculated from its
neighbours by linear interpolation and random noise is added to it.

δ
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2

Figure 1: Resolution scaling by a factor δ/√2

The MPD method sometimes causes some defects in the resulting terrain, e.g.,
unnaturally large jumps in the terrain height. One way to overcome these artifacts is
to add displacements with suitable variance to all of the points and not just the
midpoints This process is called successive random addition. In this case, twice as
many displacements are necessary compared to the basic MPD method. Details and
algorithms can be found in [1, 2].



2.3 Iterated function systems

IFS theory is a practical tool for the generation of images including clouds, smoke
and landscapes. The method is developed by Barnsley [3]. It concerns deterministic
geometry and is an extension to classical geometry. IFS uses affine transformations,
i.e., scaling, rotations, and translations, to express relations between parts of
geometrical objects. IFS can be used to extract characteristic features from an
object; to model the geometry of an object and to visualise the object.

To extract features from objects and model them, an algorithm based on the so
called Collage Theorem is used in IFS. The output of this algorithm is IFS code.
IFS code is a set of affine transformations, which define the geometry of the
underlying model, and some additional parameters. Given an IFS code, there is a
unique geometrical object A associated, called the attractor of the IFS. There is also
a unique associated measure µ which may be thought of as a distribution of material
of the object. (A,µ) defines the underlying model associated with the IFS code.

The second purpose of IFS is the rendering part. IFS code (the affine
transformations) forms the input of the IFS rendering algorithm and, based on
random iterations, the rendering algorithm produces a deterministic geometrical
object together with rendering values. Given a viewing window, a resolution and an
IFS code (A,µ), the IFS image can be calculated and rendered.

2.4 Multifractal algorithms for terrain generation

The terrain models generated by the fractal techniques from the previous sections
can all be classified as so-called monofractals. Monofractal sets are characterised by
a single fractal dimension. Multifractal sets on the other hand can be divided in a
number of subsets, each with its own fractal dimension.

For an explanation of the multifractal approach we refer to Figure 2 which shows a
so-called turbulent discrete cascade model. The cascade model has originally been
used to model turbulent (fluid) flows [10]. In particular, singularities (sudden
changes in behaviour of the turbulence) can be modelled with the multifractal
technique. In the context of terrain modelling, mountain peaks can be modelled as
singularities in the landscape.

A turbulent cascade model is scale invariant and has an energy quantity at each
level which is equal to the overall energy flux. At each successive step, the turbulent
energy flux is distributed over smaller scales according to some probability density
function and renormalised. At each step, energy fluxes are getting stronger, remain
equal, or getting weaker according to some multiplicative incremental factor. In the
end, this leads to the appearance of a full hierarchy of levels of “survival” of the flux
energy, hence of a hierarchy of dimensions of the set of survivors for these different
levels.



A raw multifractal field, e.g., an elevation grid with (square) resolution λ, denoted
with ελ, does not look like a terrain surface (compare Colour plate 1). It must first be
fractal-integrated to obtain a map that can be interpreted as terrain surface. Fractal
integration, described in §2.1, introduces the 1/f β relation in the multifractal field
ελ.
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Figure 2: A discrete multiplicative cascade process (adapted from [10])

Multifractal fields are multi-scalable which means that different statistical moments
of the field are controlled by different power-law relations:

( )ε λ ελ
q K q q= 1 (5)

where q are the moments of ελ. The moment scaling function K(q) describes how the
statistical properties of each moment behave under isotropic dilations and
contractions. The moment scaling function characterises the multifractal field ελ

and will be used in the estimation process when terrain surfaces are analysed.
According to [10], K(q) can be parameterised with two parameters, α and C1, which
will be explained below.



If the logarithm is taken of the multifractal field ελ, the multiplicative increments
(i.e. the factors controlling the increase or decrease of the energy fluxes in the
cascade process) become additive increments. Let Γλ be the logarithm of ελ. Γλ is
called the additive increment generator of the field. If the increments are random
variables, Γλ corresponds to sums of random noises. If these noises have unit mean
and unbounded variance, the normalised sum of these noises x1, x2,..., xn tends
towards a Lévy distribution:

Sn
x x x

n

n=
+ + +1 2

1

...

α
(6)

where Sn 
represents a random Lévy variable. The Lévy parameter α ranges between

0 and 2. If α = 2, Sn becomes a lognormal distribution. In that case, there will be
only small fluctuations (singularities) in the multifractal field. If α < 2, the
variances are not necessarily bounded anymore, so the probability of fluctuations
increases as α decreases and more singularities in the energy field are expected.

Thus, the first stage in obtaining a multifractal field ελ, is to generate a Lévy noise
field with a certain α which is subsequently normalised.

The second parameter in the moment scaling function K(q) that controls terrain
characteristics in a multifractal field, is the code-dimension of the mean of the field,
represented by C1. It characterises the sparseness of the mean of the field. For Lévy
noise generated multifractal fields, the moment scaling function is defined as:

( ) ( )K q
C

q q=
−

−1
1α

α

(7)

The second stage in obtaining a multifractal field ελ is to filter the output of stage
one to get a multi-scaling behaviour according to the characteristic function K(q).
The third stage is to exponentiate and normalise the output of stage two to obtain a
multifractal field ελ. The last stage is to fractal integrate ελ to obtain a terrain
surface-like map [10].

3 Implementation and results

We adopted the multifractal technique because it provides a framework for both the
analysis of real world data, as well as a generator to construct synthetic terrain. The
analysis stage provides estimates for the multifractal parameters that can then be
used in the generator to build new synthetic terrain with similar characteristics as
the analysed terrain. Furthermore, we developed a module that can perform a zoom
operation on the newly generated terrain, and we constructed a setup for dynamic
terrain generation.



3.1 Synthetic terrain generation

Our implementation of the multifractal terrain generation algorithm is based on
IRIS Explorer [12]. IRIS Explorer is a modular interactive visualisation
environment based on the data flow paradigm. It is a powerful and versatile
visualisation system that allows researchers to quickly and easily explore their data
by interactively creating, modifying, and executing there own visualisation
applications.

The multifractal terrain generation process consists of two Explorer modules: the
Multifractal Generator and the Integrator. In the Multifractal Generator, a raw
multifractal field ελis generated that is exactly determined by four parameters: α
which determines the occurrence of peaks (singularities) in the raw terrain, C1

which controls the sparseness of the mean terrain height (“roughness”), S as an
initial number (seed) for the random number generator, and R for the (square)
resolution of the terrain surface. For each seed the random generator produces
exactly the same sequence of random numbers that are used in the generation
process and thus each set of four parameters exactly specifies the raw terrain surface
patch.

Computationally, the multifractal field ελ is generated according to a procedure
adapted from Pecknold et.al. [10]. They present a method for the direct generation
of an extremal Lévy-stable variable S(α) with index α. We used this method for
equation (6). To implement the second stage of generating a multifractal field, as
discussed in paragraph 2.4, the grid of normalised S(α) noises is transformed to the
Fourier domain using a FFT. To obtain multi-scaling behaviour, the transformed
S(α) is weighted with a factor w(k) ∝ |k|-d/α' (1/α + 1/α' = 1). Finally, the noise must
be band-limited between [1,λ]. Therefore it is multiplied by a filter f(λ,k) which has
value 1 for |k| < λ and decays exponentially for |k| > λ. Then, an inverse Fourier
transformation is applied to get the (additive) generator from paragraph 2.4:

( ) ( ){ }Γλ
αα λ= − −

′F N k k
d1

1 S f ,
(8)

N1 is a normalisation factor. ελ becomes:

( )ε λ λ= N2 exp Γ (9)

The raw multifractal field ελ is then fractal integrated to introduce the 1/f β relation.
This is done in the second Explorer module, the Integrator. The integration process
is controlled by the H parameter that is related to the β parameter by β = 2H + 1.
The larger H becomes, the more smoother the terrain will be. If H = 0 then no
smoothing is performed and the raw multifractal field is displayed. Fractal



integration is also performed in the Fourier domain and therefore also involves a
FFT.

The rendering of the generated terrain models was done with the standard Explorer
modules that are available for this purpose. See Figure 3 for a schematic view of the
synthetic terrain generation sequence. Two basic Explorer applications (maps) were
developed around these modules. The first application shows the increase in detail
in the terrain as the user zooms in (§3.2), while the second application demonstrates
the capability to generate new terrain “on-the-fly” as one moves around the
landscape (see §3.3).
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Figure 3: Diagram of the synthetic terrain generation operation

The raw multifractal field in Colour plate 1 was fractal integrated and the resulting
terrain map is shown in Colour plate 2. The total time to generate and integrate a
128×128 resolution terrain map, is typically 1.5 seconds on an SGI Indigo
workstation equipped with a MIPS R4000 CPU.

3.2 Zooming in on synthetic terrain

The zoom operation operates on the raw multifractal field. Therefore, the outcome
of the zoom operation must be fractal integrated to obtain again a realistic terrain
surface. Figure 4 shows the context diagram of the zoom procedure. The zoom
operation was adapted from [9].
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Figure 4: Context diagram of the zoom operation process

The user defines a point on a synthetic terrain surface S, around which a zoom
window is constructed. The size of the zoom window depends on a zoomfactor zf,
specified by the user, and the resolution rS of S. Zooming is done in two stages:
blowing up the original data in the zoom window and, secondly, generating new
detail. Blowing up the data in the zoom window is straightforward: all data points
in the zoom window are magnified in resolution by a factor zf to form squares of
size zf2, and their values are set to the corresponding original points in the zoom
window. Detail is generated the same way as was done in the Multifractal module.



The only difference is hidden in the f(λ,k) filter. Finer detail is characterised by
higher frequencies in the Fourier domain, thus if the filter is shifted towards higher
frequencies, finer detail will be the result.

Colour plate 3 and 4 show two examples of the zoom operation. Plate 3 is the result
of zooming in twice on the lower right quadrant of the terrain surface, depicted in
Colour plate 2. The global shape is preserved but more detail is shown. Colour plate
4 is an example of zooming in 4 times on the lower right quadrant of Colour plate 2.
Again, the global structure remains. The three dominant peaks are visible and can
be found in the original picture, Colour plate 2 and also in Colour plate 3.

3.3 Dynamic terrain generation

The Integrator module does not need to integrate the complete raw multifractal
field. If we integrate only a part of the multifractal field, we can look at the
integrator as a sliding window over the raw multifractal field. If a user has some
sort of control to steer the integration window, the rendered fractal integrated part of
the multifractal field will give the appearence of movement. We implemented this
feature into IRIS Explorer module. Figure 5 shows the Explorer Render module.
The Generator module was used to generate a raw multifractal field of a certain size.
However, instead of integrating the whole field, only a smaller sub-area is
integrated. In this case we chose an integration window one fourth the size of the
underlying field. Thus, the Render screen shows only one fourth of the underlying
raw multifractal field.

Figure 5: Eight possible moving directions

The user can steer the integration window across the underlying raw multifractal
field by manipulating the mouse. By clicking the mouse button in one of the screen
areas indicated in the figure, the center of the integration window is moved to that
location and the integration operation is subsequently performed on the area



centered around that point. Because now only the integration has to be performed
instead of both the generation and the integration, the time required to visualise the
synthetic terrain is greatly reduced and the user can “pan” around the multifractal
landscape interactively.

3.4 Real world terrain analysis

In addition to the terrain generation modules, we also developed a module for the
analysis of multifractal parameters. This module takes 2D images or Digital
Elevation Maps as input and provides estimates for the values of the multifractal
parameters α, C1 and H. The analysis method is based on the Structure function and
it provides rough estimates for these parameters [11]. The method involves counting
occurrences of height-differences in the terrain at a number of increasing scale
levels (i.e., decreasing resolution). Colour plate 6 shows a sample from a Mars
Digital Elevation Model (DEM) with resolution 64×64. Its actual size is 150x300
km. The difference between highest and lowest point on the DEM measures 4,5 km.
We estimated the H parameter from the structure function, and calculated the
moment scaling function K(q). From K(q), α and C1 were estimated. Figure 6 shows
a plot of its moment scaling function K(q). We found the following estimates:
H = 0.8; C1 = 0.1; α = 1.7.

Figure 6: A plot of the Moment scaling function K(q) of the sample Mars DEM
depicted in Colour plate 6

These same values were then used to generate Colour plate 7. Colour plate 6 can be
characterised as a rather calm terrain surface without sudden changes and these
features are again found in Colour plate 7.

4 Towards a parallel approach

Although the preliminary performance result of 1.5 s to generate a 128×128 digital
elevation model is encouraging, a considerable performance increase is required in



order to achieve real-time terrain generation speeds. Fortunately, the structure of the
algorithms and the architecture of our generator suggest several possibilities for
performance gain.

4.1 Distribution of the generation of raw terrain patches

Instead of having a serial connection between a single  Multifractal Generator that
generates the raw multifractal field and the Integrator, a feasible set-up would be
one with multiple generation processes, each running on their own processor,
feeding the Integrator that in turn generates DEM data that are fed into the
rendering stage. The Integrator does not need to filter the entire multifractal field in
one piece. Instead, only the data in a local window (with respect to the current
viewpoint and -direction in the terrain) are integrated and rendered. See Figure 7.
By employing predictive algorithms to determine where to generate a new patch
depending on the movement of the viewpoint, new terrain patches can be generated
before they become visible (i.e. have to be integrated and rendered).
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Figure 7: Different processors can be used to generate multifractal patches that are
partially integrated, depending on location and size of the local integration

window.

4.2 Parallellisation of the multifractal generation and
integration algorithms

The multifractal generation and the integration (smoothing) algorithms themselves
are also candidates for parallellisation. For instance, in both the generation and the
integration steps (inverse) Fast Fourier Transforms are used, for which a parallel
implementation of the FFT algorithm might be considered.

4.3 Further research

In addition to the previously mentioned issues, two more subjects for futher work
can be mentioned. One deals with better methods for parameter estimation for



terrain analysis, while the second is related to the generation of terrain features with
a directional preference.

The analysis method that we used for real world terrain analysis, provides rather
poor estimates. It is better to use for example the Double Trace Moments method
[13] for more accurate parameter estimation. The Structure function could still be
used for initial estimates.

So far we have used the multifractal formalism to generate terrain models that show
height features that have no directional preference. We have experimented
somewhat with several parameters in the generation and integration processes that
influence the directional distribution of height values, but this aspect requires still
more study. One of these parameters we have called the skewness factor. Colour
plate 5 shows an example of this. Colour plate 5 was made in exactly the same way
as Colour plate 2 was, but in the former, the skewness factor was changed so that
the terrain in plate 5 exhibits more structures oriented from left to right across the
image, while in plate 2 they show a directional preference from top to bottom.
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Colour plates

Colour plate 1. Raw multifractal field

Colour plate 2: Fractal integrated multifractal field



Colour plate 3: Example of the zoom operation with zoomfactor 2

Colour plate 4: Example of the zoom operation with zoomfactor 4



Colour plate 5: Skewed terrain surface

Colour plate 6: Analysed Mars terrain patch: H = 0.8; C1 = 0.1; α = 1.7.



Colour plate 7: Generated terrain with H = 0.8; C1 = 0.1; α = 1.7.

Colour plate 8: Synthetic Martian Terrain Surface


