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Abstract

The work, describedn this paper,coversthreetopics: real-world
terrain analysis, synthetic terrain generation based upon the
resultsof the analysisstage anddynamicterraingenerationEach
topic involvesthe theoryof multifractals.First, a summaryof four
known fractal-basedechniquedor terraingeneratioris presented
including fractional Brownian motion, Mid-point displacement,
Iterated Function Systemsand the multifractal formalism. The
multifractal formalism was chosenfor both the analysisof real-
world terrain data, as well asthe generationof syntheticterrain
surfacesThe authorsimplementeda multifractal terrain analysis
algorithm that capturegterrain characteristicof real-world data,
into five parameters. These parameters were put intolt@fractal
terrain generationalgorithm that producedsyntheticterrain with
featuressimilar to thosein the terrainthatwasanalysedAlso, an
algorithm for zooming in on synthetic terrain was developed.
Finally, an application was developedthat generatesterrain
dynamically.

1 Introduction

The work describedin this paper aims at the investigation of fractal based
techniques for the representation of terrain modelsmnthe earliestpointin fractal

research,applications for terrain generationwere developed[1, 2, 3, 4]. In

particularwe areinterestedn the possibilitiesto usethesemethodsfor the on-line
generationof terrain modelsin real-time for visual simulation applications.In

visual simulation systems, the geometricaldelof theworld lies at the basisof the
system.This representatiorof the environmentis the input basedon which the
imagesarerenderedlIt containsthe mathematicatlefinition of everyelementin the
simulatedworld. Terraindatabasefor visual simulationpurposesareusuallybased
on datathathavebeenacquiredeitherby surveying,by digitizing existingmaps,or

by spatially samplingreal-worldterrain using, e.g., aerial photographyor satellite
born height measuring equipment.



In order to achievereal-time generationof images, basedon thesevery large
databaseggechniquessuchasspatialindexing, databaseulling, and level-of-detail
managemerntiavebeendeveloped5]. Theseallow theimagegeneratiomprocesgo
minimize the amountof datathat hasto be retrievedfrom the databaseandthusto
maximize the rendering speed.

For certainvisual simulation applications,either military or in the civil domain,
difficulties in the data-acquisitiorprocessseverelylimit the availability of detailed
terrain databased-or instance for the simulationof remotelycontrolled planetary
rover vehicleson Mars, only very small partsof that planethavebeencapturedin

3D terrain modelsof sufficientdetail. In orderto evaluatethe performanceof new
rover designsor training operatorsdatabasesf wider areaswith differentterrain
featuresare required.lIt is often not requiredthat thesedatabasesepresentctual
real-world terrain, as long as the characteristic features are represented correctly.

Another wayof representinghaturalphenomenaisesthe theoryof fractals[1]. This
mathematicatheoryis basedon numerousterationsor recursionof a simplerule,
producing complex shapes.By introducing small random deviations in every
iteration, the resulting shapebecomesirregular. From a fractal definition it is
possibleto extract output at any required resolution, higher output resolutions
requiringmoreiterations.In this way, fractal-basednethodsprovideimplicit level-
of-detail control.

It is possible to synthesize realistically looking representationsof natural
phenomenae.g., terrain models,basedon fractal techniqueq2]. Conversely real

world data can be analysed and their fractal properties ext{@;:t@d Thesefractal
parameterswhich characteriseertainfeaturesof, e.g.,a terrain,canthenbe used

to control the terrain generationprocess.Thus, a synthetic but visually realistic
terrain model can be generated when only limited amounts of real-world terrain data
are available.

Finally, becausehe basicrule is very simple,the amountof input dataneededis
very small. The realistic output comes from the numerous iteraticdhe rule. This
property of fractal algorithms has been recognisedas very important for data
compression applicationg][

The abovementionedaspectsof fractal methods,i.e., ability to representatural
terrain features, implicit level-of-detail control, and compact input data
representationmake them interesting candidatesfor the on-line generationof
terrain models as opposed to the off-line constructiageofnetricterraindatabases.
However, the generationof fractal basedterrain models requires considerable
processingpower, becauseghe numberif iterationsof the basicrule can be large.
Therefore, the parallellisation of fractasederraingeneratioralgorithmsin order
to boost their performance, is an important issue.



In the remainderof this paper,we first presenta brief overview of variousfractal
based methods for terrain generationin section 2. Section 3 describesour
implementation of aexperimentaterrainanalysisandgeneratiorsystempasedon
the multifractal approachWe alsoprovide preliminaryresultsof syntheticMartian
terrain models. Finally, in section 4, the possibilities for parallellisation of the
generation algorithm, which is a subject for future research, are discussed.

2. Fractal techniquesfor terrain modelling

In this chapter,a summaryof fractal theoryand algorithmsfor constructingfractal
landscapesis presentedin 2.1, fractal Brownian motion is discussedParagraph
2.2 gives an overview of the Mid-point displacementtechnique and Iterated
Function Systems(IFS) are presentedn 2.3. The last paragraph2.4, treatsthe
multifractal formalism. Multifractals are especially suitable to capture the
characteristicsof terrain featuresand to generatenew terrain basedon these
characteristics.

2.1 Fractional Brownian motion

The characterizationand modelling of random fractals can be based on
generalisationsof fractional Brownian motion [1], denotedas fBm. Fractional
Brownian motion is an extensionto the conceptof Brownianmotion. A fractional
Brownian motion is a single valued function V,(t). Its increments
AV, (AY) = V4, (L) - Va (t,) have a Gaussian distribution with variance:

<AV A(A)> 0 At (1)

whereAt = |t, - t;| and the angularbracketsdenoteaveragesver many samplesof
V. (t). The parameteH hasa valueO< H < 1. The valueH =/, gives Brownian
motion with AV? O At, and its incrementsare independent For H >/, the
incrementshavea positive correlationandfor H <'/,, a negativecorrelation.If the
time scaleAt is changedby a factorr, thenthe incrementsAV, changeby a factor

rt

<AV,(r AY)> O 1" <AV,(AL)>. 2)

This non-uniformscalingis known as self-affinity. Uniform scalingis known as
self-similarity. The fractal dimensidb for a trace oW, (t) is:

D=2-H ©)

The randomfunction V(t) is characterisedby its spectraldensityfunction S, (f). If
V(t) is Gaussian white nois8, (f) O 1/°. For simple powelawswhereS, (f) O 1/"
with 1 <3 < 3, it can be shown th@t=2H + 1. This is a direct relation betwetre



spectraldensity S, and the fractional Brownian motion function V. For Brownian
motion, H = */,. which correspondso a spectraldensityfunction () with § =2 or
1/ % noise.

Becausea trace of fractional Brownian motion looks very much like a mountain
horizon, it canbe usedfor artificial terrain generation.To do this, V, (t) mustbe
replaced by, (x,y) representingltitude wherex andy representhe coordinatesn

the plane. Parameters replacedoy r with Ar? = Ax? + Ay 2. The fractaldimension
of the surface is:

D=3-H @)

Terraincanbe numericallygeneratedisingthe relation betweenfunction V andits
spectraffunction S, by filtering a surfaceof samplesof white noiseto give directly
the desiredpowerlaw 1/f? for variationsin any desireddirection. Filtering canbe
done using the Fast Fourier Transforind].

2.2  Mid-point displacement

The mid-point displacementmethod (MPD) is a recursive generatingtechnique
which approximate§Bm. Given a squaregrid of unit size d, the MPD method
generates new set of interpolationpoints to the grid, makingits resolutiond/v2
(seeFigure 1). Displacingagainresultsin a resolutionof &/2 etc. In eachstage,
resolutionis scaledwith a factor r = 1¥2. A new point is calculatedfrom its
neighbours by linear interpolation and random noise is added to it.

H 6/&

)

Figure1: Resolution scaling by a factor &/v2

The MPD method sometimescausessome defectsin the resulting terrain, e.g.,
unnaturally large jumps in the terrain heighheway to overcomeheseartifactsis
to add displacementsvith suitablevarianceto all of the points and not just the
midpointsThis processs called successive random addition. In this case twice as
manydisplacementare necessargomparedo the basicMPD method.Detailsand
algorithms can be found i1,[2].



2.3  lterated function systems

IFS theoryis a practicaltool for the generationof imagesincluding clouds,smoke
andlandscapesThe methodis developedoy Barnsley [3]. It concerngdeterministic
geometryandis an extensiorno classicalgeometryIFS usesaffine transformations,
i.e., scaling, rotations, and translations,to expressrelations between parts of
geometricalobjects. IFS can be usedto extract characteristicfeaturesfrom an
object; tomodel the geometry of an object andvisualise the object.

To extractfeaturesfrom objectsand model them, an algorithm basedon the so
called Collage Theorem is usedin IFS. The output of this algorithmis IFS code.
IFS codeis a set of affine transformationswhich define the geometryof the
underlyingmodel, and someadditional parametersGiven an IFS code,thereis a
uniquegeometricabbjectA associatedcalledthe attractorof the IFS. Thereis also
a unique associated measpreshich may be thought of as a distributiohmaterial
of the object. A1) defines the underlying model associated with the IFS code.

The second purpose of IFS is the rendering part. IFS code (the affine
transformations)forms the input of the IFS renderingalgorithm and, basedon
randomiterations, the renderingalgorithm producesa deterministicgeometrical
object togethewith renderingvalues.Givena viewing window, a resolutionandan
IFS code A1), the IFS image can be calculated and rendered.

24 Multifractal algorithmsfor terrain generation

The terrain modelsgeneratedy the fractal techniquedrom the previoussections
can allbe classifiedasso-calledmonofractals. Monofractalsetsarecharacterisetly

a singlefractal dimension.Multifractal setson the otherhandcanbe dividedin a

number of subsets, each with its own fractal dimension.

For an explanationof the multifractal approachwe referto Figure 2 which showsa
so-calledturbulentdiscretecascadenodel. The cascadenmodel has originally been
used to model turbulent (fluid) flows [10]. In particular, singularities (sudden
changesin behaviourof the turbulence)can be modelled with the multifractal
techniqueln the contextof terrainmodelling, mountainpeakscan be modelledas
singularities in the landscape.

A turbulentcascadenodelis scaleinvariant and has an energyquantity at each
level which is equal to the overall enetftyyx. At eachsuccessivetep,theturbulent
energyflux is distributedover smallerscalesaccordingto someprobability density
functionandrenormalisedAt eachstep,energyfluxes aregetting stronger,remain
equal,or gettingweakeraccordingto somemultiplicative incrementafactor. In the
end, this leads to the appearance of a full hierarchy of levels of “sureiié flux
energy,henceof a hierarchyof dimensionsof the setof survivorsfor thesedifferent
levels.



A raw multifractal field, e.g.,an elevationgrid with (square)esolutionA, denoted
with €, does not look like a terrain surface (compare Colour platé mustfirst be
fractal-integratedo obtaina mapthat canbe interpretedasterrain surface. Fractal
integration,describedn §2.1,introducesthe 1/f? relationin the multifractal field
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Figure2: A discrete multiplicative cascade process (adapted from [10])

Multifractal fields aremulti-scalablewvhich meanshat different statisticalmoments
of the field are controlled by different power-law relations:

<€Aq> :)\K(q)<51q> 5)

whereq are the moments @f. The moment scaling functidf(q) describes how the
statistical properties of each moment behave under isotropic dilations and
contractions.The momentscaling function characteriseshe multifractal field ¢,
and will be usedin the estimationprocesswhen terrain surfacesare analysed.
According to L0], K(q) canbe parameterisewith two parametersy andC;, which
will be explained below.



If the logarithmis takenof the multifractal field €,, the multiplicative increments
(i.e. the factors controlling the increaseor decreaseof the energyfluxes in the
cascaderocesspecomeadditiveincrementsLet I, bethe logarithmof g,. Iy is
called the additive incrementgeneratorof the field. If the incrementsare random
variables [, corresponds$o sumsof randomnoisesIf thesenoiseshaveunit mean
and unboundedvariance,the normalisedsum of thesenoisesxy, Xa,..., X, tends
towards a Lévy distribution:

X+ XoF. . HX,

e (6)

where§, representsi randomLévy variable.The Lévy parameten rangesbetween
0 and2. If a =2, §, becomesa lognormaldistribution. In that case,therewill be
only small fluctuations (singularities) in the multifractal field. If o <2, the
variancesare not necessarilyboundedanymore,so the probability of fluctuations
increases ag decreases and more singularities in the energy field are expected.

Thus,thefirst stagein obtaininga multifractal field ¢,, is to generatea Lévy noise
field with a certairox which is subsequently normalised.

The secondparameteiin the momentscaling function K(g) that controls terrain
characteristics in a multifractéield, is the code-dimensiof the meanof thefield,
representetdy C,. It characterisethe sparsenessf the meanof the field. For Lévy
noise generated multifractal fields, the moment scaling function is defined as:

<(a) =L (a*-q)

a-1 )

The secondstagein obtaininga multifractal field €, is to filter the outputof stage
oneto get a multi-scalingbehaviouraccordingto the characteristidunction K(q).

Thethird stageis to exponentiateandnormalisethe outputof stagetwo to obtaina
multifractal field €,. The last stageis to fractal integrateg, to obtain a terrain
surface-like map1Q].

3 Implementation and results

We adoptedhe multifractal techniquebecauset providesa frameworkfor boththe
analysisof realworld datg aswell asa generatoto constructsyntheticterrain. The
analysisstageprovidesestimatesor the multifractal parameterghat can then be
usedin the generatoito build new syntheticterrain with similar characteristicas
the analysederrain. Furthermorewe developeca modulethat canperforma zoom
operationon the newly generatederrain and we constructeda setupfor dynamic
terrain generation.



3.1  Syntheticterrain generation

Our implementationof the multifractal terrain generationalgorithm is basedon
IRIS Explorer [12]. IRIS Explorer is a modular interactive visualisation
environmentbasedon the data flow paradigm.It is a powerful and versatile
visualisationsystemthat allows researchero quickly and easily exploretheir data
by interactively creating, modifying, and executing there own visualisation
applications.

The multifractal terrain generationprocessconsistsof two Explorer modules:the
Multifractal Generator and the Integrator. In the Multifractal Generator,a raw
multifractal field €,is generatedhat is exactly determinedby four parameterso

which determinesthe occurrenceof peaks(singularities)in the raw terrain, C;

which controlsthe sparsenessf the meanterrain height (“roughness”),S as an

initial number (seed)for the random numbergenerator,and R for the (square)
resolution of the terrain surface.For each seedthe random generatorproduces
exactly the same sequenceof random numbersthat are usedin the generation
process and thus each set of fparametergxactlyspecifiesthe raw terrainsurface
patch.

Computationally,the multifractal field €, is generatedaccordingto a procedure
adaptedrom Pecknoldet.al.[10]. They presenta methodfor the direct generation
of an extremallLévy-stablevariable S(@a) with index a. We usedthis methodfor

equation(6). To implementthe secondstageof generatinga multifractal field, as
discussedn paragrapt?.4,thegrid of normalisedS(a) noisesis transformedo the
Fourierdomainusing a FFT. To obtain multi-scaling behaviour,the transformed
S(a) is weightedwith a factorw(k) O k[ (1/a + 1/a' = 1). Finally, the noisemust
beband-limitedbetweer1,A]. Thereforeit is multiplied by a filter f(A,k) which has
value 1 for |k| <A and decaysexponentiallyfor [k| >A. Then, an inverse Fourier
transformation is applied to get the (additive) generator from paragraph 2.4:

r = F-l{ N, S(a )| e f(A,k)} ®)

N, is a normalisation factog, becomes:

€y =N, eXP(R) 9)

Theraw multifractalfield €, is thenfractalintegratedto introducethe 1/ relation
This is donein the secondExplorermodule,the Integrator.The integrationprocess
is controlledby the H parametethat is relatedto the 3 parameteby 3 =2H + 1.
The larger H becomesthe more smootherthe terrain will be. If H=0 then no
smoothing is performed and the raw multifractal field is displayed Fractal



integrationis also performedin the Fourier domainand thereforealso involves a
FFT.

Therenderingof the generatederrainmodelswasdonewith the standardexplorer
modules that aravailablefor this purpose SeeFigure3 for a schematioview of the
syntheticterraingeneratiorsequenceTwo basicExplorerapplicationg(maps)were
developedaroundthesemodules.The first applicationshowsthe increasein detail
in the terrain as the user zoomgq®3.2) while the secondapplicationdemonstrates
the capdility to generatenew terrain “on-the-fly” as one moves around the
landscapésee 83.3)

multifractal fractal render
generate integrate

Figure3: Diagram of the synthetic terrain generation operation

The raw multifractalfield in Colour plate 1 wasfractalintegratedandthe resulting
terrainmapis shownin Colour plate 2. The total time to generateand integratea
128x128 resolution terrain map is typically 1.5 secondson an SGI Indigo
workstation equipped with a MIPS R4000 CPU.

3.2  Zoomingin on synthetic terrain

The zoomoperationoperateson the raw multifractal field. Therefore the outcome
of the zoomoperationmustbe fractal integratedto obtain againa realistic terrain
surface.Figure 4 showsthe context diagram of the zoom procedure.The zoom
operation was adapted fro® [

multifractal fractal render
generate integrate
zoom

Figure4: Context diagram of the zoom operation process

The userdefinesa point on a syntheticterrain surfaceS, aroundwhich a zoom
window is constructedThe size of the zoomwindow dependson a zoomfactorZ,

specifiedby the user,and the resolutionrs of S Zoomingis donein two stages:
blowing up the original datain the zoom window and, secondly,generatingnew
detail. Blowing up the datain the zoomwindow is straightforward:all datapoints
in the zoomwindow are magnifiedin resolutionby a factor zf to form squaresof

size z?, andtheir valuesare setto the correspondingpriginal pointsin the zoom
window. Detail is generatedhe sameway aswasdonein the Multifractal module.



The only differenceis hiddenin the f(A,k) filter. Finer detail is characterisedy
higherfrequenciesn the Fourierdomain,thusif thefilter is shiftedtowardshigher
frequencies, finer detail will be the result.

Colourplate3 and4 showtwo examplef the zoomoperation Plate3 is the result

of zoomingin twice on the lower right quadrantof the terrain surface,depictedin
Colour plate 2. The globahapes preservedut moredetailis shown.Colourplate

4 is an example of zooming in 4 times on the lower right quadrant of Colouplate
Again, the global structureremains.The threedominantpeaksare visible and can

be found in the original picture, Colour plate 2 and also in Colour plate 3.

3.3  Dynamicterrain generation

The Integratormodule doesnot needto integratethe completeraw multifractal
field. If we integrateonly a part of the multifractal field, we can look at the
integratoras a sliding window over the raw multifractal field. If a userhassome
sort of control to steer the integration window, the rendered fractal integrated part
the multifractal field will give the appearencef movementWe implementecthis
featureinto IRIS Explorer module. Figure 5 showsthe Explorer Rendermodule.
The Generator module was used to generate a raw multifractal field of a certain size.
However, instead of integrating the whole field, only a smaller sub-areais
integrated.In this casewe chosean integrationwindow onefourth the size of the
underlyingfield. Thus,the Renderscreenshowsonly one fourth of the underlying

raw multifractal field.
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Figure5: Eight possible moving directions

The usercan steerthe integrationwindow acrossthe underlying raw multifractal
field by manipulatingthe mouse By clicking the mousebuttonin one of the screen
areasindicatedin the figure, the centerof the integrationwindow is movedto that
location and the integration operationis subsequentlyperformed on the area



centeredaroundthat point. Becausenow only the integrationhasto be performed
insteadof boththe generatiorandthe integration,the time requiredto visualisethe
syntheticterrainis greatly reducedandthe usercan“pan” aroundthe multifractal
landscape interactively.

34 Real world terrain analysis

In additionto the terrain generationrmodules,we also developeda modulefor the
analysis of multifractal parameters.This module takes 2D images or Digital

Elevation Maps as input and providesestimatedor the valuesof the multifractal

parameterst, C; andH. The analysis method sedon the Structurefunctionand
it provides rough estimates for these paramételjs The methodinvolvescounting
occurrence of height-differencesn the terrain at a number of increasingscale
levels (i.e., decreasingresolution). Colour plate 6 showsa samplefrom a Mars

Digital ElevationModel (DEM) with resolution64x64. Its actualsizeis 150x300
km. The difference betwedrighestandlowestpoint onthe DEM measured,5km.

We estimatedthe H parameterfrom the structurefunction, and calculatedthe

moment scaling functioK(q). FromK(g), a andC, wereestimatedFigure6 shows
a plot of its momentscaling function K(g). We found the following estimates:
H=0.8;C,=0.1;a =1.7.

0.4 "tmpplot_Kq" —
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Figure6: A plot of the Moment scaling function K(q) of the sample Mars DEM
depicted in Colour plate 6

Thesesamevalueswerethenusedto generateColourplate 7. Colour plate6 canbe

characteriseds a rather calm terrain surfacewithout suddenchangesand these
features are again found in Colour plate 7.

4 Towardsaparallel approach

Althoughthe preliminaryperformanceaesultof 1.5 s to generatea 128x128digital
elevationmodelis encouraginga considerablgerformancencreaseis requiredin



order to achieve real-time terrain generation spdeattunately the structureof the
algorithmsand the architectureof our generatorsuggestseveralpossibilities for
performance gain.

4.1  Distribution of the generation of raw terrain patches

Insteadof havinga serialconnectionbetweena single Multifractal Generatorthat
generateshe raw multifractal field and the Integrator,a feasibleset-upwould be
one with multiple generationprocessesgach running on their own processor,
feeding the Integrator that in turn generatesDEM data that are fed into the
rendering stagelhe Integratordoesnot needto filter the entiremultifractalfield in
one piece. Instead,only the datain a local window (with respectto the current
viewpointand -directionin the terrain) are integratedand rendered SeeFigure 7.
By employing predictive algorithmsto determinewhereto generatea new patch
dependingon the movemenf the viewpoint, newterrainpatchesanbe generated
before they become visible (i.e. have to be integrated and rendered).

local integration window

raw multifractal field patt

Figure7: Different processors can be used to generate multifractal patchesthat are
partially integrated, depending on location and size of the local integration
window.

4.2  Paralldlisation of the multifractal generation and
integration algorithms

The multifractal generatiorandthe integration(smoothing)algorithmsthemselves
arealsocandidatedor parallellisation For instancejn boththe generatiorandthe
integrationsteps(inverse)FastFourier Transformsare used,for which a parallel
implementation of the FFT algorithm might be considered.

4.3 Further research

In additionto the previouslymentionedissuestwo more subjectsfor futher work
can be mentioned.One dealswith better methodsfor parameterestimation for



terrain analysis, while the secondéatedto the generatiorof terrainfeatureswith
a directional preference.

The analysismethodthat we usedfor real world terrain analysis,providesrather
poor estimateslt is betterto usefor examplethe Double Trace Momentsmethod
[13] for more accurateparameterestimation.The Structurefunction could still be
used for initial estimates.

So far wehaveusedthe multifractalformalismto generatderrainmodelsthat show
height features that have no directional preference.We have experimented
somewhatvith severalparametersn the generationand integrationprocesseshat
influencethe directionaldistribution of heightvalues,but this aspectrequiresstill
more study. One of theseparameterave have called the skewness factor. Colour
plate5 showsan exampleof this. Colour plate 5 wasmadein exactlythe sameway
as Colour plate 2 was, but in the former, the skewnesdactor was changedso that
the terrainin plate5 exhibits more structuresorientedfrom left to right acrossthe
image, while in plate 2 they show a directional preference from top to bottom.
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Colour plates

Colour platel. Raw multifractal field

Colour plate 2: Fractal integrated multifractal field



Colour plate 3: Example of the zoom operation with zoomfactor 2

Colour plate 4: Example of the zoom operation with zoomfactor 4



Colour plate 5: Skewed terrain surface

Colour plate 6: Analysed Mars terrain pateh=0.8;C; =0.1;a = 1.7.



Colour plate 7: Generated terrain with=0.8;C; =0.1;a = 1.7.

Colour plate 8: Synthetic Martian Terrain Surface



